1

Errata zum Buch "Lineare Algebra", 2. Auflage. Errata zu den Lösungen ab Seite 5.

Stand: 16. Mai 2024

Seite	Zeile	Falsch	Richtig
40	15 v.u.	$\langle a, x \rangle$	$-\langle a, x \rangle$
40	14 v.u	c	-c
40	13 v.u.	-c	+c
40	8 v.u.	$\lambda \mathrm{det}(a,b) $	$ \lambda \mathrm{det}(a,b) $
42	16 v.o.	a auf b abbildet	die Drehung über $\angle(a,b)$ ist
76	10 v.o.	$ a ^2 + b ^2$	$ a ^2 \cdot b ^2$
126	18 v.o.	j_i -te	j_1 -te
160	3 v.o.	lineare Abbildung $\omega \colon V^k \to \mathbb{R}$	Abbildung $\omega \colon V^k \to K$
172	10 v.u.	Matrizen	$n \times n$ -Matrizen
184	14 v.o.	gegeben, so	gegeben ist, nach evtl. Ergänzung mit anderen \boldsymbol{b}_i aus
			$\operatorname{Ker}(A^k), (b_1, \dots, b_s)$ eine Basis modulo $\operatorname{Ker}(A^{k-1})$. Es
186	9 v.o	$(A-\lambda_i)^{m_1}$	$(A - \lambda_1 \cdot \operatorname{Id})^{m_1}$
186	9 v.o.	$(A - \lambda_s)^{m_s}$ $B_i := (A - \lambda_i)^{n_i}$	$(A - \lambda_s \cdot \operatorname{Id})^{m_s}$
186	10 v.o.	$B_i := (A - \lambda_i)^{n_i}$	$B_i := A - \lambda_i \cdot \mathrm{Id}$
186	10 v.o	$(A-\lambda_i)^{m_i}$	$(A - \lambda_i \cdot \operatorname{Id})^{m_i}$
188	1 v.u.	$C^{-1} \cdot A \cdot C$	$C^{-1} \cdot D \cdot C$
198	13 v.u.	$\widetilde{b}_k := b_k$	$\widetilde{b}_{k+1} := b_{k+1}$
200	8 v.u.	c_{ik}	(c_{ik})
201	1.v.o	Zeigen Sie: Sei V ein	Sei V ein endlich dimensionaler
208	10 v.o.	Sei	Nach Normierung gilt $ b_1 = 1$. Sei
209	8 v.u.	\mathbb{R}^n	\mathbb{R}^4
209	5 v.u.	(2,1,0,-2)	(2,4,-1,2)
210	9 v.u.	$x^T \cdot A \cdot y$	$x^T \cdot A \cdot \overline{y}$
220	5 v.u.	b^2x^2	b^2y^2
218	5 v.u.	von $TVS^T(H)$ gegeben	gegeben
242	10 v.u.	$\bigcap_{N \triangleleft G \colon R \subset N}$	$ \bigcap_{N \triangleleft F(A): R \subset N} $

248	9 v.o.	4.	4. Sei P eine p -Sylowgruppe von G .
250	7 v.o.	b^i , also $ba = a^i b$	b^i
252	12 v.o.	$(1\ 2\ k)$	$(2\ 3\ k).$
252		Der Fall $n = 36$ ist vergessen worden.	Ist G einfach, dann ist $n_3 = 4$, aber $36 \nmid 12 = 4!/2$.
253	18 v.o.	#H = #G	$\#G = \#A_5 = 60$
253	18 v.u.	nicht einfach. Dann ist $n_3 = 6$.	einfach. Dann ist $n_5 = 6$.
253	17 v.u.	Einfügen:	$n = 2 \cdot 3^3 \cdot p \text{ mit } p \ge 7.$
			Dann $n_p > p$ und $n_p \mid 6$, Widerspruch!
253	4 v.u.	$n_5 = 36$ ist vergessen worden.	Siehe Ende der Errataliste
254	12 v.o.	$Q_{12}(1/a_1)$	$Q_{12}(-1/a_1)$
255	1 v.o.	K^*	F^*
255	13 vo.	$ghg^{-1}(v) = gh(e_1) = g(ce_1) = cv$	gibt es ein $\widetilde{h} \in P$ mit $h = g\widetilde{h}g^{-1}$.
		für ein $c \neq 0$.	Es folgt $h(v) = c_v \cdot v$ für ein $c_v \neq 0$.
		Deshalb ist $g = c \text{Id}$ und $h \in D$.	Dies gilt für alle $v \in V$ und $h \in D$ folgt.
255	15 v.u.	$Q_{ij}(\lambda)$	$Q_{ji}(\lambda)$
257	18 v.u.	G = PcH	$G = H \cup PcH$
257	12 v.u.	$cbc \in P$	$cbc \in PcP$
263	8 v.o.	modulo l	modulo I
266	3 v.u.	I ist nulldimensional genau dann, wenn	Ist I nulldimensional, so gilt
266	14. v.u.	$(x_1 - a_{i,1}) \cdot \ldots \cdot (x_n - a_{i,d_i})$ $(x_1 - a_{i,1})^{m_{i,1}} \cdot \ldots \cdot (x_n - a_{i,d_i})^{m_{i,d_i}}$	$\prod_{\substack{j=1\\d_i\\j=1}}^{d_i} (x_i - a_{i,j})$
268	12. v.u.	$(x_1 - a_{i,1})^{m_{i,1}} \cdot \ldots \cdot (x_n - a_{i,d_i})^{m_{i,d_i}}$	$\prod_{j=1}^{d_i} (x_i - a_{i,j})^{m_{i,j}}$
274	15 v.u.	$\langle x^5, x^2y^2, y^3 \rangle$	$\langle y^6, x^4, xy^2 \rangle$
274	8 v.u.	y^6y^5	$y^6 + y^5$
276	5 v.o.	$a_s f$	$a_s f_s$
276	6 und 12 v.u.	t	s
276	11 v.u.	j teilt $LM(f_j)$, nicht $LM(f_i)$	$j \neq i$ teilt LM (f_j) kein Monom von f_i .
277	13 v.o.	a_{1n}	a_{n1}
278	7 v.o.	$1 \le i < j \le s$	$1 \le i < j \le t$

278	15 v.u.	$LM(a_jf_j)$	$LM(a_if_i)$
278	13,14 v.u.	$m(f_i,f_j)$	$m(f_j,f_i)$
284	10 v.o.	Letzter Satz fehlt.	Dann hat $M_g(t)$ die verschiedenen Nullstellen $g(p_i)$ $(i = 1,, s)$, deshalb gilt $\deg(M_g(t)) = s$.
284	12 v.o.	$K[x_1,\ldots,x_n]$	K[t]
284	1,2 v.u.	die reellen Lösungen in $V(I)\cdots$ zwei Lösungen sind komplex.	$1 + \sqrt{5} \text{ und } 1 - \sqrt{5}. \text{ Dann gilt } V(I) \\ = \{(-1,1), (-1,-2), (2+\sqrt{5},1), (2-\sqrt{5},1)\}.$
288	14 v.o.	$a_1g_1+\ldots+a_tg_t$	$a_1f_1+\ldots+a_sf_s$
290	7 v.u.	$f \in$	$g \in$
300	9 v.u.	Beweis von $1 \notin I_f$ fehlt.	Siehe Ende der Errataliste.
304	6 v.o.	Elementen.	Elementen und schreibe $K = \mathbb{F}_p$.
304	13 v.u.	5	4
305	18 v.o.	ist.	ist?
306	17 v.u.	$(cg)^{\star}$	$(\overline{cg})^{\star}$
307	6 v.o.	Warum ist	Ist
310	3 v. o.	9.7	9.6
310	17 v.u.	f und m^2	$f \cdot m + m^2$
310	16 v.u.	$r_s f_s$	r_s
310	15 v.u.	$\mod f$.	$\mod f \cdot m + m^2$
310	10 v.u.	$-a_1 \sum_{i=2}^s a_i \widehat{f}_i$	$-t_1\sum_{i=2}^s a_i\widehat{f_i}$
314	9 v.o	y_1, \dots, y_u	$x_1, \dots x_s$
314	10 v.o.	y^{eta_i}	eta_i
314	17 v.o	$\sqrt{I:J_1}$	$\sqrt{J:J_1}$
314	11.v.u.	f_s	f_d

• Im Beweis von Satz 10.5 Nr 3 einfügen nach 8 v.u. "eindimensional":

Wir zeigen, dass $1 \notin I_f$. Sei $f_1(x) = f(x)$ und wir definieren rekursiv $f_{i+1}(x)$ durch

$$f_i(x) = (x - x_i)f_{i+1}(x) + f_i(x_i)$$

für $i=2,\ldots n$. Hier ist $f_{i+1}(x)\in K[x_1,\ldots,x_i][x]$ normiert vom Grad n-i+1 in x. Insbesondere ist $f_{n+1}=1$. Bez. $>_{lex}$ mit $x_1<\cdots< x_n$ gilt $LM(f_i(x_i))=x_i^{n-i+1}$. Nach dem Produkt-Kriterium ist $(f_1(x_1),f_2(x_2),\ldots,f_n(x_n))$ eine Gröbner Basis und $1\notin \langle f_1(x_1),\ldots,f_n(x_n)\rangle$. Weil

$$f(x) = (x - x_1) \cdot \ldots \cdot (x - x_n) \mod \langle f_1(x_1), \ldots, f_n(x_n) \rangle$$

folgt, dass $I_f \subset \langle f_1(x_1), \dots, f_n(x_n) \rangle \neq K[x_1, \dots, x_n]$ und $1 \notin I_f$.

© 2022 Pearson Deutschland GmbH

 \bullet Auf Seite 253 vor "Somit haben wir den nachfolgenden Satz" einfügen:

Sei $n_5=36$. Dann ist $n_3=10$, denn $n_3=4$ impliziert $\#G \le 4!/2$. Wäre $P \cap Q=\{e\}$ für alle verschiedene 3-Sylowgruppen P,Q von G, so hätte G mindestens $4\cdot 36+8\cdot 10>180$ Elemente.

Also gibt es $P,Q\in \mathrm{Syl}_3(G)$ mit $\#P\cap Q=3.$ Jetzt argumentiere wie bei n=144.

Errata zu den Lösungen

Aufgabe 1.14 Nr. 3:

3.
$$\begin{pmatrix} 3 & 1 \\ 4 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 7 & 15 \\ 10 & 22 \end{pmatrix}$$

$$\left(\begin{array}{cc} 2 & 4 \\ 1 & 3 \end{array}\right) \cdot \left(\begin{array}{cc} 3 & 1 \\ 4 & 2 \end{array}\right) = \left(\begin{array}{cc} 22 & 10 \\ 15 & 7 \end{array}\right)$$

Aufgabe 9.10 Nr. 3: Statt $\langle g_i \rangle \supset \langle g_i \rangle$. Somit $f_i \mod g_i$: $\langle f_i \rangle \supset \langle g_i \rangle$ und f_i teilt g_i .

Aufgabe 10.15, bei $\mathbb{F}_3[x]$: Grad 5: Antwort 48 Grad 6: Antwort 116.